FACULTY:	Faculty of Technology and Education		
FIELD OF STUDY:	Materials Science and Engineering		
COURSE TITLE:	Vacuum and plasma technique		
LECTURER'S NAME:	dr hab. Kazimierz Reszka, University Professor		
E-MAIL ADDRESS OF THE			
LECTURER:	kazimierz.reszka@tu.koszalin.pl		
ECTS POINTS FOR THE COURSE:	4		
ACADEMIC YEAR:	2015/2016		
SEMESTER:	W/S		
(W – winter, S – summer)			
HOURS IN SEMESTER:	30+15=45		
LEVEL OF THE COURSE: (1 st cycle, 2 nd cycle, 3 rd cycle)	1 st cycle		
TEACHING METHOD:			
(lecture, laboratory, group tutorials,	Lectures (30h), Exercises (15h)		
seminar, other-what type?)	, , , ,		
LANGUAGE OF INSTRUCTION:	English		
ASSESSMENT METOD:			
(written exam, oral exam, class test,	Written exam, class test		
written reports, project work, presentation, continuous assessment,	written exam, class test		
other – what type?)			
COURSE CONTENT:	The course covers the following topics: Gas laws and models,		
	viscous, intermediate and molecular states. Criterion of classification		
	the vacuum; static and dynamic. The vacuum reinforcement and		
	conductance values of flow. Classification of vacuum pumps on the		
	operating principle base. Criterion of choice the vacuum pumps to		
	mating. The vacuum measurement, monitoring, control and regulation.		
	Analysis of gas using mass spectrometers. Types of leaks and their		
	detection. Pressure ranges of industrial vacuum processes. Principles of		
	ionization diluted gases. Methods of electron/ion beam making and		
	application in materials investigations and vacuum technologies. The		
	states of gas discharge at DC and RF potential and their properties.		
	Comparison of thermal conductivity of monomolecular gases and		
	mixtures at pressures close to molecular state. Calculation of specific		
	surface area. Calculation of gas flow rate by vacuum reinforcement in		
	viscous, intermediate and molecular states . Design of vacuum system		
	for static and dynamic vacuum. Estimation of leaks on the basis of		
ADDITIONAL INSCRIPTION	pressure drop and on the basis of subs bulb.		
ADDITIONAL INFORMATION:	Required knowledge: fundamental laws of molecular and gaseous		
RECOMMENDED LITERATURE	physics 1.G.L.Weissler, R.W. Carlson, Vacuum Physics and Technology, Acad.		
NECOMMENDED EITERATORE	Press, NY (1979)		
	2.W.Umvat, Fundamentals of Vacuum Technology , Lectures of Leybold,		
	Kat-Nr199 90, 2007		
	(https://www.3.nd.edu./nsl/Lectures/urls/Leybold.FUNDAMENTALS.pdf		
	3.J.F.O'Hanlon, A Users Guide of Vacuum Technology, John Wiley and Sons (198)		
	4.R.V.Stuart, Vacuum Technology, Thin Films and Sputtering, Acad.Press		
	INC (1983)		
	5.R.L.Boxman, D.M.Sanders, P.J.Martin, Handbook of Vacuum ARC		
	Science and Technology, William Andrew INC (1996) ISBN 978-0-8155-		
	1375-9		